skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hossain, Rahim"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Vision–language models learn visual concepts from the supervision of natural language. It can significantly enhance the generalizability of real-time intelligent sensing, such as analyzing camera-captured real-time images for visually impaired users. However, adapting vision–language models to distribution shifts at test time, caused by several factors such as lighting or weather changes, remains challenging. In particular, most existing test-time adaptation methods rely on gradient-based fine-tuning and backpropagation, making them computationally expensive and unsuitable for real-time applications. To address this challenge, the Training-Free Dynamic Adapter (TDA) has recently been introduced as a lightweight alternative that uses a dynamic key–value cache and pseudo-label refinement for test-time adaptation without backpropagation. Building on this, we propose TDA-L, a new framework that integrates Low-Rank Adaptation (LoRA) to reduce the size of feature representations and related computational overhead at test time using pre-learned low-rank matrices. TDA-L applies LoRA transformations to both query and cached features during inference, cost-efficiently improving robustness to distribution shifts while maintaining the training-free nature of TDA. Experimental results on seven benchmarks show that TDA-L maintains accuracy but achieves lower latency, less memory consumption, and higher throughput, making it well-suited for AI-based real-time sensing. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026